My Python Codes In General Are Very Slow, Is This Normal?
Solution 1:
Performance is not an explicit design goal of Python:
Don’t fret too much about performance--plan to optimize later when needed.
That's one of the reasons why Python integrated with a lot of high performance calculating backend engines, such as numpy, OpenBLAS and even CUDA, just to name a few.
The best way to go foreward if you want to increase performance is to let high-performance libraries do the heavy lifting for you. Optimizing loops within Python (by using xrange instead of range in Python 2.7) won't get you very dramatic results.
Here is a bit of code that compares different approaches:
- Your original
list(range())
- The suggestes use of
xrange()
- Leaving the
i
out - Using numpy to do the addition using numpy array's (vector addition)
- Using CUDA to do vector addition on the GPU
Code:
import timeit
import matplotlib.pyplot as mplplt
iter = 100
testcode = [
"for i in list(range(1000000)): a = 1+1",
"for i in xrange(1000000): a = 1+1",
"for _ in xrange(1000000): a = 1+1",
"import numpy; one = numpy.ones(1000000); a = one+one",
"import pycuda.gpuarray as gpuarray; import pycuda.driver as cuda; import pycuda.autoinit; import numpy;" \
"one_gpu = gpuarray.GPUArray((1000000),numpy.int16); one_gpu.fill(1); a = (one_gpu+one_gpu).get()"
]
labels = ["list(range())", "i in xrange()", "_ in xrange()", "numpy", "numpy and CUDA"]
timings = [timeit.timeit(t, number=iter) for t in testcode]
print labels, timings
label_idx = range(len(labels))
mplplt.bar(label_idx, timings)
mplplt.xticks(label_idx, labels)
mplplt.ylabel('Execution time (sec)')
mplplt.title('Timing of integer addition in python 2.7\n(smaller value is better performance)')
mplplt.show()
Results (graph) ran on Python 2.7.13 on OSX:
The reason that Numpy performs faster than the CUDA solution is that the overhead of using CUDA does not beat the efficiency of Python+Numpy. For larger, floating point calculations, CUDA does even better than Numpy.
Note that the Numpy solution performs more that 80 times faster than your original solution. If your timings are correct, this would even be faster than Matlab...
A final note on DFS (Depth-afirst-Search): here is an interesting article on DFS in Python.
Solution 2:
Try using xrange
instead of range
.
The difference between them is that **xrange**
generates the values as you use them instead of range
, which tries to generate a static list at runtime.
Solution 3:
Unfortunately, python's amazing flexibility and ease comes at the cost of being slow. And also, for such large values of iteration, I suggest using itertools module as it has faster caching.
The xrange is a good solution however if you want to iterate over dictionaries and such, it's better to use itertools as in that, you can iterate over any type of sequence object.
Post a Comment for "My Python Codes In General Are Very Slow, Is This Normal?"