Keras Model Concat: Attribute And Value Error
This is a keras model I have made based on the paper Liu, Gibson, et al 2017 (https://arxiv.org/abs/1708.09022). It can be seen in fig1. I have 3 questions- I am not sure if I am
Solution 1:
You can use the Functional()
API in order to solve your problem (I haven't read the paper, but here is how you can combine models and get a final output).
I used 'relu' activation for simplicity purposes (ensure you use keras
inside tensorflow
)
Here is the code that should work:
import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
model1= Sequential()
model2= Sequential()
model3= Sequential()
input_sh = (619,2,1)
model1.add(Convolution1D(filters=16, kernel_size=21, padding='same', activation='relu', input_shape=input_sh))
model1.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model1.add(BatchNormalization())
model1.summary()
model2.add(Convolution1D(filters=32, kernel_size=11, padding='same', activation='relu', input_shape= input_sh))
model2.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model2.add(BatchNormalization())
model2.summary()
model3.add(Convolution1D(filters=64, kernel_size=5, padding='same', activation='relu', input_shape= input_sh))
model3.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model3.add(BatchNormalization())
model3.summary()
concatenated = concatenate([model1.output, model2.output, model3.output], axis=-1)
x = Dense(64, activation='relu')(concatenated)
x = Flatten()(x)
x = Dropout(.5)(x)
x = Dense(19, activation="softmax")(x)
final_model = Model(inputs=[model1.input,model2.input,model3.input],outputs=x)
final_model.summary()
Model: "functional_3"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
conv1d_15_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_16_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_17_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_15 (Conv1D) (None, 619, 2, 16) 352 conv1d_15_input[0][0]
__________________________________________________________________________________________________
conv1d_16 (Conv1D) (None, 619, 2, 32) 384 conv1d_16_input[0][0]
__________________________________________________________________________________________________
conv1d_17 (Conv1D) (None, 619, 2, 64) 384 conv1d_17_input[0][0]
__________________________________________________________________________________________________
max_pooling2d_15 (MaxPooling2D) (None, 310, 1, 16) 0 conv1d_15[0][0]
__________________________________________________________________________________________________
max_pooling2d_16 (MaxPooling2D) (None, 310, 1, 32) 0 conv1d_16[0][0]
__________________________________________________________________________________________________
max_pooling2d_17 (MaxPooling2D) (None, 310, 1, 64) 0 conv1d_17[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 310, 1, 16) 64 max_pooling2d_15[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 310, 1, 32) 128 max_pooling2d_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 310, 1, 64) 256 max_pooling2d_17[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 310, 1, 112) 0 batch_normalization_15[0][0]
batch_normalization_16[0][0]
batch_normalization_17[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 310, 1, 64) 7232 concatenate_5[0][0]
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 19840) 0 dense_5[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 19840) 0 flatten_3[0][0]
__________________________________________________________________________________________________
dense_6 (Dense) (None, 19) 376979 dropout_3[0][0]
==================================================================================================
Total params: 385,779
Trainable params: 385,555
Non-trainable params: 224
Post a Comment for "Keras Model Concat: Attribute And Value Error"