Tensorflow Training Cnn On Custom Images
All the tensorflow tutorials do a great job, however, they all use preprocessed downloadable datasets that work out of the box. Their tutorial on MNIST is the perfect example. For
Solution 1:
classifier.train
function expects numpy arrays, but not tensors. Hence you need to convert example_batch, label batch
by evaluating them with a session, but not wrapping them using np.array()
function. (Explanation)
sess.run(tf.initialize_all_variables())
tf.train.start_queue_runners(sess)
classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="./test")
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x':getTrainImages().eval()},
y=getLabels().eval(),
batch_size=10,
num_epochs=None,
shuffle=True)
classifier.train(
input_fn=train_input_fn,
steps=20,
)
Solution 2:
I recommended to apply tools on top of tensorflow. You might consider to code it through roNNie, Theano, Keras, Torch or Caffe.
Post a Comment for "Tensorflow Training Cnn On Custom Images"