Skip to content Skip to sidebar Skip to footer

Read JSON File As Pyspark Dataframe Using PySpark?

How can I read the following JSON structure to spark dataframe using PySpark? My JSON structure {'results':[{'a':1,'b':2,'c':'name'},{'a':2,'b':5,'c':'foo'}]} I have tried with :

Solution 1:

Json string variables

If you have json strings as variables then you can do

simple_json = '{"results":[{"a":1,"b":2,"c":"name"},{"a":2,"b":5,"c":"foo"}]}'
rddjson = sc.parallelize([simple_json])
df = sqlContext.read.json(rddjson)

from pyspark.sql import functions as F
df.select(F.explode(df.results).alias('results')).select('results.*').show(truncate=False)

which will give you

+---+---+----+
|a  |b  |c   |
+---+---+----+
|1  |2  |name|
|2  |5  |foo |
+---+---+----+

Json strings as separate lines in a file (sparkContext and sqlContext)

If you have json strings as separate lines in a file then you can read it using sparkContext into rdd[string] as above and the rest of the process is same as above

rddjson = sc.textFile('/home/anahcolus/IdeaProjects/pythonSpark/test.csv')
df = sqlContext.read.json(rddjson)
df.select(F.explode(df['results']).alias('results')).select('results.*').show(truncate=False)

Json strings as separate lines in a file (sqlContext only)

If you have json strings as separate lines in a file then you can just use sqlContext only. But the process is complex as you have to create schema for it

df = sqlContext.read.text('path to the file')

from pyspark.sql import functions as F
from pyspark.sql import types as T
df = df.select(F.from_json(df.value, T.StructType([T.StructField('results', T.ArrayType(T.StructType([T.StructField('a', T.IntegerType()), T.StructField('b', T.IntegerType()), T.StructField('c', T.StringType())])))])).alias('results'))
df.select(F.explode(df['results.results']).alias('results')).select('results.*').show(truncate=False)

which should give you same as above result

I hope the answer is helpful


Solution 2:

!pip install findspark
!pip install pyspark
import findspark
import pyspark
findspark.init()
sc = pyspark.SparkContext.getOrCreate()
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('abc').getOrCreate()

Let's Generate our own JSON data This way we don't have to access the file system yet.

stringJSONRDD = sc.parallelize((""" 
  { "id": "123",
    "name": "Katie",
    "age": 19,
    "eyeColor": "brown"
  }""",
   """{
    "id": "234",
    "name": "Michael",
    "age": 22,
    "eyeColor": "green"
  }""", 
  """{
    "id": "345",
    "name": "Simone",
    "age": 23,
    "eyeColor": "blue"
  }""")
)

Then Create DataFrame

swimmersJSON = spark.read.json(stringJSONRDD)

Create temporary table

swimmersJSON.createOrReplaceTempView("swimmersJSON")

Hope this helps you. For complete code you can refer to this GitHub repository.


Solution 3:

from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import explode

spark = SparkSession.builder.getOrCreate()
sc = spark.sparkContext
json_data = '{"results":[{"a":1,"b":2,"c":"name"},{"a":2,"b":5,"c":"foo"}]}'
json_rdd = sc.parallelize([json_data])
df = spark.read.json(json_rdd)
df =df.withColumn("results", explode(df.results)).select( 
                         col("results.a").alias("a"),
                         col("results.b").alias("b"),
                         col("results.c").alias("c") ) 
df.show()

Post a Comment for "Read JSON File As Pyspark Dataframe Using PySpark?"