Fill NaN Values
I have a dataframe TIMESTAMP P_ACT_KW PERIODE_TARIF P_SOUSCR 2016-01-01 00:00:00 116 HC 250 2016-01-01 00:10:00 121 HC 250 2016-01-01 00:20:00 121 NaN 250 To use this dataframe, I
Solution 1:
use isin
to test for membership:
data['PERIODE_TARIF']=np.where(data['PERIODE_TARIF'].isin([0, 1,2, 3, 4, 5, 22, 23]),'HC','HP')
in
doesn't understand how to evaluate an array of boolean values as it becomes ambiguous if you have more than 1 True
in the array hence the error
Post a Comment for "Fill NaN Values"