How To Apply Hierarchy Or Multi-index To Pandas Columns
I have seen lots of examples on how to arrange dataframe row indexes hierarchically, but I am trying to do the same for columns and am not understanding the syntax: Given: df = pd.
Solution 1:
You can define MultiIndices
using the from_arrays
or from_tuples
or from_product
classmethods. Here is an example using from_arrays
:
arrays = [[1, 2]*3, ['A', 'B', 'C']*2]
columns = pd.MultiIndex.from_arrays(arrays, names=['foo', 'bar'])
df = pd.DataFrame(np.random.randn(2,6),
columns=columns,
index= pd.date_range('20000103',periods=2))
yields
In [81]: df
Out[81]:
foo 1 2 1 2 1 2
bar A B C A B C
2000-01-03 1.277234 -0.899547 0.040337 -0.878752 -0.524336 0.922440
2000-01-04 -1.706797 0.450379 1.510868 -2.539827 -1.909996 -0.003851
Defining a MultiIndex for the index is done in exactly the same way as for columns.
Post a Comment for "How To Apply Hierarchy Or Multi-index To Pandas Columns"